

callee

callee provides a wide collection of argument matchers to use with the standard unittest.mock library.

It allows you to write simple, readable, and powerful assertions
on how the tested code should interact with your mocks:

from callee import Dict, StartsWith, String

mock_requests.get.assert_called_with(
 String() & StartsWith('https://'),
 params=Dict(String(), String()))

With callee, you can avoid both the overly lenient mock.ANY [https://docs.python.org/3/library/unittest.mock.html#any], as well as the tedious, error-prone code
that manually checks Mock.call_args [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock.call_args] and call_args_list [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock.call_args_list].

User’s Guide

Start here for the installation instructions and a quick, complete overview of callee and its usage.

	Installing

	Using matchers with mock

	Creating custom matchers

API Reference

If you are looking for detailed information about all the matchers offered by callee,
this is the place to go.

	General matchers
	Type matchers

	Attribute matchers

	Function matchers

	Object matchers

	String matchers
	Patterns

	Numeric matchers
	Integers

	Rational numbers

	Floating point numbers

	Complex numbers

	All numbers

	Collection matchers
	Abstract collection types

	Concrete collections

	Operator matchers
	Comparisons

	Memberships

	Identity

	Equality

 Project logo (First Telephone)
 by Patricia Canales Odriozola
 from the Noun Project

Installing

TL;DR: On Python 2.6, 2.7, and 3.3+, simply use pip (preferably inside virtualenv):

$ pip install callee

More detailed instructions and additional notes can be found below.

Compatibility

callee itself has no external depedencies: it only needs Python. Both Python 2 and Python 3 is supported,
with some caveats:

	if you’re using Python 2, you need version 2.6 or 2.7

	if you use Python 3, you need at least version 3.3

The library is tested against both CPython (the standard Python implementation) and PyPy [http://pypy.org/].

About the mock library

Although it’s not a hard dependency, by design callee is meant to be used with the unittest.mock module,
which implements mock objects for testing.

In Python 3.3 and later, this module is a part of the standard library [https://docs.python.org/3/library/unittest.mock.html], and it’s already available on any Python distribution.

In earlier versions of Python – including 2.7 and even 2.6 – you should be using the backport [https://pypi.python.org/pypi/mock] called mock.
It has the exact same interface as unittest.mock, and can be used to write forward-compatible test code.
You can install it from PyPI with pip:

$ pip install mock

If you plan to run your tests against both Python 2.x and 3.x, the recommended way of importing the mock library
is the following:

try:
 import unittest.mock as mock
except ImportError:
 import mock

You can then use the mock classes in your tests by referring to them as mock.Mock [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock] or mock.MagicMock [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.MagicMock].
Additionally, you’ll also have a convenient access to the rest of the mocking functionality, like the @mock.patch [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch]
decorator.

Instructions

The preferred way to install callee is through pip:

$ pip install callee

This will get you the most recent version available on PyPI [https://pypi.python.org/pypi/callee/].

Bleeding edge

If you want to work with the development version instead, you may either manually clone it using Git, or have pip
install it directly from the Git repository.

The first option is especially useful when you need to make some modifications to the library itself
(which you’ll hopefully contribute back via a pull request!). If that’s the case, clone the library
and install it in development mode:

$ git clone https://github.com/Xion/callee.git
Initialized empty Git repository in ~/dev/callee/.git/
$ cd callee
activate/create your virtualenv if necessary
$ python setup.py develop
...
Finished processing dependencies for callee

The second approach is adequate if you want to use some feature of the library that hasn’t made it to a PyPI release yet
but don’t need to make your own modifications. You can tell pip to pull the library directly from its Git repository:

activate/create your virtualenv if necessary
$ pip install git+https://github.com/Xion/callee.git#egg=callee

 Project logo (First Telephone)
 by Patricia Canales Odriozola
 from the Noun Project

Using matchers with mock

Mocks – or more generally, test doubles – are used to provide the necessary dependencies
(objects, functions, data, etc.) to the code under test. We often configure mocks to expose an interface that the code can rely on. We also expect it to make use of this interface in a well-defined, predictable way.

In Python, the configuration part mostly taken care of by the mock library. But when it comes to asserting
that the expected mocks interactions had happened, callee can help quite a bit.

Example

Suppose you are testing the controller of a landing page for users that are signed in to your web application.
The page should display a portion of the most recent items of interest – posts, notifications, or anything else
specific to the service.

The test seems straightforward enough:

@mock.patch.object(database, 'fetch_recent_items')
def test_landing_page(self, mock_fetch_recent_items):
 login_user(self.user)
 self.http_client.get('/')
 mock_fetch_recent_items.assert_called_with(count=8)

Unfortunately, the assert it contains turns out to be quite brittle. If you think about it, the number of items
to display is very much a UX decision, and it likely changes pretty often as the UI is iterated upon.
But with a test like that, you have to go back and modify the assertion whenever the value is adjusted
in the production code.

Not good! The test shouldn’t really care what the exact count is. As long as it’s a positive integer,
maybe except 1 or 2, the test should pass just fine.

Using argument matchers provided by callee, you can express this intent clearly and concisely:

from callee import GreaterThan, Integer

...
mock_fetch_recent_items.assert_called_with(
 count=Integer() & GreaterThan(1))

Much better! Now you can tweak the layout of the page without further issue.

Matching basics

You can use all callee matchers any time you are asserting on calls received by Mock, MagicMock,
or other mock objects. They are applicable as arguments to any of the following methods:

	assert_called_with

	assert_called_once_with

	assert_any_call

	assert_not_called

Moreover, the mock.call [https://docs.python.org/3/library/unittest.mock.html#calls-as-tuples] helper can also accept matchers in place of call arguments. This enables you to also use
the assert_has_calls [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock.assert_has_calls] method if you like:

some_mock.assert_has_calls([
 call(0, String()),
 call(1, String()),
 call(2, String()),
])

Finally, you can still leverage matchers even when you’re working directly with the call_args_list, method_calls,
or mock_calls attributes. The only reason you’d still want that, though, is verifying the exact calls a mock receives, in order:

assert some_mock.call_args_list == [
 mock.call(String(), Integer()),
 mock.call(String(), 42),
]

But most tests don’t need to be this rigid, so remember to use this technique sparingly.

Combining matchers

Individual matchers, such as String or Float,
can be combined to build more complex expressions. This is accomplished with Python’s “logical” operators:
|, &, and ~.

Specifically, given matchers A and B:

	A | B matches objects that match A or B

	A & B matches objects that match both A and B

	~A matches objects do not match A

Here’s a few examples:

some_mock.assert_called_with(Number() | InstanceOf(Foo))
some_mock.assert_called_with(String() & ShorterThan(9))
some_mock.assert_called_with(String() & ~Contains('forbidden'))

All matchers can be combined this way, including any custom ones that you write yourself.

Next steps

Now that you know how to use matchers and how to combine them into more complex expressions, you probably want to
have a look at the wide array of existing matchers offerred by callee:

	General matchers
	Type matchers

	Attribute matchers

	Function matchers

	Object matchers

	String matchers
	Patterns

	Numeric matchers
	Integers

	Rational numbers

	Floating point numbers

	Complex numbers

	All numbers

	Collection matchers
	Abstract collection types

	Concrete collections

	Operator matchers
	Comparisons

	Memberships

	Identity

	Equality

If your needs can’t be met by it, there is always a possibility of defining your own matchers
as well.

 Project logo (First Telephone)
 by Patricia Canales Odriozola
 from the Noun Project

General matchers

These matchers are the most general breed that is not specific to any
particular kind of objects. They allow you to match mock parameters
based on their Python types, object attributes, and even arbitrary
boolean predicates.

	
class callee.general.Any

	Matches any object.

	
class callee.general.Matching(predicate, desc=None)

	Matches an object that satisfies given predicate.

	Parameters

	
	predicate – Callable taking a single argument
and returning True or False

	desc – Optional description of the predicate.
This will be displayed as a part of the error message
on failed assertion.

	
callee.general.ArgThat

	alias of callee.general.Matching

	
class callee.general.Captor(matcher=None)

	Argument captor.

You can use Captor to “capture” the original argument
that the mock was called with, and perform custom assertions on it.

Example:

captor = Captor()
mock_foo.assert_called_with(captor)

captured value is available as the `arg` attribute
self.assertEquals(captor.arg.some_method(), 42)
self.assertEquals(captor.arg.some_other_method(), "foo")

New in version 0.2.

	Parameters

	matcher – Optional matcher to validate the argument against
before it’s captured

Type matchers

Use these matchers to assert on the type of objects passed to your mocks.

	
class callee.types.InstanceOf(type_, exact=False)

	Matches an object that’s an instance of given type
(as per isinstance).

	Parameters

	
	type_ – Type to match against

	exact – If True, the match will only succeed if the value type matches
given type_ exactly.
Otherwise (the default), a subtype of type_ will also match.

	
callee.types.IsA

	alias of callee.types.InstanceOf

	
class callee.types.SubclassOf(type_, strict=False)

	Matches a class that’s a subclass of given type
(as per issubclass).

	Parameters

	
	type_ – Type to match against

	strict – If True, the match if only succeed if the value is a _strict_
subclass of type_ – that is, it’s not type_ itself.
Otherwise (the default), any subclass of type_ matches.

	
callee.types.Inherits

	alias of callee.types.SubclassOf

	
class callee.types.Type

	Matches any Python type object.

	
class callee.types.Class

	Matches a class (but not any other type object).

Attribute matchers

These match objects based on their Python attributes.

	
class callee.attributes.Attrs(*args, **kwargs)

	Matches objects based on their attributes.

To match successfully, the object needs to:

	have all the attributes whose names were passed
as positional arguments (regardless of their values)

	have the attribute names/values that correspond exactly
to keyword arguments’ names and values

Examples:

Attrs('foo') # `foo` attribute with any value
Attrs('foo', 'bar') # `foo` and `bar` attributes with any values
Attrs(foo=42) # `foo` attribute with value of 42
Attrs(bar=Integer()) # `bar` attribute whose value is an integer
Attrs('foo', bar='x') # `foo` with any value, `bar` with value of 'x'

	
class callee.attributes.HasAttrs(*args)

	Matches objects that have all of the specified attribute names,
regardless of their values.

Function matchers

	
class callee.functions.Callable

	Matches any callable object (as per the callable() [https://docs.python.org/2.7/library/functions.html#callable] function).

	
class callee.functions.Function

	Matches any Python function.

	
class callee.functions.GeneratorFunction

	Matches a generator function, i.e. one that uses yield in its body.

Note

This is distinct from matching a generator,
i.e. an iterable result of calling the generator function,
or a generator comprehension ((... for x in ...)).
The Generator matcher
should be used for those objects instead.

	
class callee.functions.CoroutineFunction

	Matches a coroutine function.

A coroutine function is an asynchronous function defined using the
@asyncio.coroutine or the async def syntax.

These are only available in Python 3.4 and above.
On previous versions of Python, no object will match this matcher.

Object matchers

	
class callee.objects.Bytes

	Matches a byte array, i.e. the bytes type.

On Python 2, bytes class is identical to str [https://docs.python.org/2.7/library/functions.html#str] class.

On Python 3, byte strings are separate class, distinct from str [https://docs.python.org/2.7/library/functions.html#str].

	
class callee.objects.Coroutine

	Matches an asynchronous coroutine.

A coroutine is a result of an asynchronous function call, where the async
function has been defined using @asyncio.coroutine or the async def
syntax.

These are only available in Python 3.4 and above.
On previous versions of Python, no object will match this matcher.

	
class callee.objects.FileLike(read=True, write=None)

	Matches a file-like object.

In general, a file-like object is an object you can read data from,
or write data to.

	Parameters

	
	read – Whether only to match objects that do support (True)
or don’t support (False) reading from them.
If None is passed, reading capability is not matched against.

	write – Whether only to match objects that do support (True)
or don’t support (False) writing to them.
If None is passed, writing capability is not matched against.

 Project logo (First Telephone)
 by Patricia Canales Odriozola
 from the Noun Project

String matchers

The String matcher is the one you’d be using most of the time to match string arguments.

More specialized matchers can distinguish between native Python 2/3 types for strings and binary data.

	
class callee.strings.String

	Matches any string.

On Python 2, this means either str [https://docs.python.org/2.7/library/functions.html#str] or unicode objects.

On Python 3, this means str [https://docs.python.org/2.7/library/functions.html#str] objects exclusively.

	
class callee.strings.Unicode

	Matches a Unicode string.

On Python 2, this means unicode objects exclusively.

On Python 3, this means str [https://docs.python.org/2.7/library/functions.html#str] objects exclusively.

	
class callee.strings.Bytes

	Matches a byte array, i.e. the bytes type.

On Python 2, bytes class is identical to str [https://docs.python.org/2.7/library/functions.html#str] class.

On Python 3, byte strings are separate class, distinct from str [https://docs.python.org/2.7/library/functions.html#str].

Patterns

These matchers check whether the string is of certain form.

Matching may be done based on prefix, suffix, or one of the various ways of specifying strings patterns,
such as regular expressions.

	
class callee.strings.StartsWith(prefix)

	Matches a string starting with given prefix.

	
class callee.strings.EndsWith(suffix)

	Matches a string ending with given suffix.

	
class callee.strings.Glob(pattern, case=None)

	Matches a string against a Unix shell wildcard pattern.

See the fnmatch [https://docs.python.org/2.7/library/fnmatch.html#module-fnmatch] module for more details about those patterns.

	Parameters

	
	pattern – Pattern to match against

	case – Case sensitivity setting. Possible options:

	'system' or None: case sensitvity is system-dependent
(this is the default)

	True: matching is case-sensitive

	False: matching is case-insensitive

	
class callee.strings.Regex(pattern, flags=0)

	Matches a string against a regular expression.

	Parameters

	
	pattern – Regular expression to match against.
It can be given as string,
or as a compiled regular expression object

	flags – Flags to use with a regular expression passed as string

 Project logo (First Telephone)
 by Patricia Canales Odriozola
 from the Noun Project

Numeric matchers

These matchers allow you to assert on specific numeric types, such as int [https://docs.python.org/2.7/library/functions.html#int]s or float [https://docs.python.org/2.7/library/functions.html#float]s
They are often combined with operator matchers to formulate constaints on numeric arguments of mocks:

from callee import Integer, GreaterThan
mock_foo.assert_called_with(Integer() & GreaterThan(42))

Integers

	
class callee.numbers.Integer

	Matches a regular integer.

On Python 3, there is no distinction between regular and long integer,
making this matcher and Long equivalent.

On Python 2, this matches the int [https://docs.python.org/2.7/library/functions.html#int] integers exclusively.

	
class callee.numbers.Long

	Matches a long integer.

On Python 3, this is the same as regular integer, making this matcher
and Integer equivalent.

On Python 2, this matches the long [https://docs.python.org/2.7/library/functions.html#long] integers exclusively.

	
class callee.numbers.Integral

	Matches any integer.
This ignores the length of integer’s internal representation on Python 2.

Rational numbers

	
class callee.numbers.Fraction

	Matches a fraction object.

	
class callee.numbers.Rational

	Matches a rational number.
This includes all integer numbers as well.

Floating point numbers

	
class callee.numbers.Float

	Matches a floating point number.

	
class callee.numbers.Real

	Matches any real number.

This includes all rational and integer numbers as well, which in Python
translates to fractions, and integers.

Complex numbers

	
class callee.numbers.Complex

	Matches any complex number.

This includes all real, rational, and integer numbers as well,
which in Python translates to floats, fractions, and integers.

All numbers

	
class callee.numbers.Number

	Matches any number
(integer, float, complex, custom number types, etc.).

 Project logo (First Telephone)
 by Patricia Canales Odriozola
 from the Noun Project

Collection matchers

Besides allowing you to assert about various collection types (lists, sets, etc.),
these matchers can also verify the elements inside those collections.

This way, you can express even complex conditions in a concise and readable manner.
Here’s a couple of examples:

list of ints
List(Integer())
List(of=Integer())
List(int) # types are also accepted as item matchers

list of strings starting with 'http://'
List(of=String() & StartsWith('http://'))

dictionary mapping strings to strings
Dict(String(), String())

dict with string keys (no restriction on values)
Dict(keys=String())

list of dicts mapping strings to some custom type
List(Dict(String(), Foo))

Abstract collection types

These mostly correspond to the abstract base classes [https://docs.python.org/library/collections.html#collections-abstract-base-classes] defined in the standard collections [https://docs.python.org/2.7/library/collections.html#module-collections] module [https://docs.python.org/library/collections.html].

	
class callee.collections.Iterable

	Matches any iterable.

	
class callee.collections.Generator

	Matches an iterable that’s a generator.

A generator can be a generator expression (“comprehension”)
or an invocation of a generator function (one that yields objects).

Note

To match a generator function itself, you should use the
GeneratorFunction matcher instead.

	
class callee.collections.Sequence(of=None)

	Matches a sequence of given items.

A sequence is an iterable that has a length and can be indexed.

	Parameters

	of – Optional matcher for the elements,
or the expected type of the elements.

	
class callee.collections.Mapping(*args, **kwargs)

	Matches a mapping of given items.

Constructor can be invoked either with parameters described below
(given as keyword arguments), or with two positional arguments:
matchers/types for dictionary keys & values:

Dict(String(), int) # dict mapping strings to ints

	Parameters

	
	keys – Matcher for dictionary keys.

	values – Matcher for dictionary values.

	of – Matcher for dictionary items, or a tuple of matchers
for keys & values, e.g. (String(), Integer()).
Cannot be provided if either keys or values
is also passed.

Concrete collections

These match the particular Python built-in collections types, like list or dict [https://docs.python.org/2.7/library/stdtypes.html#dict].

	
class callee.collections.List(of=None)

	Matches a list of given items.

	Parameters

	of – Optional matcher for the elements,
or the expected type of the elements.

	
class callee.collections.Set(of=None)

	Matches a set [https://docs.python.org/2.7/library/stdtypes.html#set] of given items.

	Parameters

	of – Optional matcher for the elements,
or the expected type of the elements.

	
class callee.collections.Dict(*args, **kwargs)

	Matches a dictionary (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) of given items.

Constructor can be invoked either with parameters described below
(given as keyword arguments), or with two positional arguments:
matchers/types for dictionary keys & values:

Dict(String(), int) # dict mapping strings to ints

	Parameters

	
	keys – Matcher for dictionary keys.

	values – Matcher for dictionary values.

	of – Matcher for dictionary items, or a tuple of matchers
for keys & values, e.g. (String(), Integer()).
Cannot be provided if either keys or values
is also passed.

	
class callee.collections.OrderedDict(*args, **kwargs)

	Matches an ordered dictionary (collections.OrderedDict [https://docs.python.org/2.7/library/collections.html#collections.OrderedDict])
of given items.

On Python 2.6, this requires the ordereddict backport package.
Otherwise, no object will match this matcher.

For more information about arguments,
see the documentation of Dict.

 Project logo (First Telephone)
 by Patricia Canales Odriozola
 from the Noun Project

Operator matchers

Comparisons

These matchers use Python’s relational operators: <, >=, etc.

	
class callee.operators.Less(*args, **kwargs)

	Matches values that are smaller (as per < operator)
than given object.

Accepts a single argument: the reference object to compare against.

It can be passed either as a single positional parameter,
or as a single keyword argument – preferably with a readable name,
for example:

some_mock.assert_called_with(Number() & LessOrEqual(to=42))

	
callee.operators.LessThan

	alias of callee.operators.Less

	
callee.operators.Lt

	alias of callee.operators.Less

	
class callee.operators.LessOrEqual(*args, **kwargs)

	Matches values that are smaller than,
or equal to (as per <= operator), given object.

Accepts a single argument: the reference object to compare against.

It can be passed either as a single positional parameter,
or as a single keyword argument – preferably with a readable name,
for example:

some_mock.assert_called_with(Number() & LessOrEqual(to=42))

	
callee.operators.LessOrEqualTo

	alias of callee.operators.LessOrEqual

	
callee.operators.Le

	alias of callee.operators.LessOrEqual

	
class callee.operators.Greater(*args, **kwargs)

	Matches values that are greater (as per > operator)
than given object.

Accepts a single argument: the reference object to compare against.

It can be passed either as a single positional parameter,
or as a single keyword argument – preferably with a readable name,
for example:

some_mock.assert_called_with(Number() & LessOrEqual(to=42))

	
callee.operators.GreaterThan

	alias of callee.operators.Greater

	
callee.operators.Gt

	alias of callee.operators.Greater

	
class callee.operators.GreaterOrEqual(*args, **kwargs)

	Matches values that are greater than,
or equal to (as per >= operator), given object.

Accepts a single argument: the reference object to compare against.

It can be passed either as a single positional parameter,
or as a single keyword argument – preferably with a readable name,
for example:

some_mock.assert_called_with(Number() & LessOrEqual(to=42))

	
callee.operators.GreaterOrEqualTo

	alias of callee.operators.GreaterOrEqual

	
callee.operators.Ge

	alias of callee.operators.GreaterOrEqual

By length

In addition to simple comparison matchers described, callee offers a set of dedicated matchers for asserting
on object’s length. You can use them in conjunction with any Python Sequence: a str [https://docs.python.org/2.7/library/functions.html#str]ing,
list, collections.deque [https://docs.python.org/2.7/library/collections.html#collections.deque], and so on.

	
class callee.operators.Shorter(*args, **kwargs)

	Matches values that are shorter (as per < comparison on len)
than given value.

	
callee.operators.ShorterThan

	alias of callee.operators.Shorter

	
class callee.operators.ShorterOrEqual(*args, **kwargs)

	Matches values that are shorter than,
or equal in length to (as per <= operator), given object.

	
callee.operators.ShorterOrEqualTo

	alias of callee.operators.ShorterOrEqual

	
class callee.operators.Longer(*args, **kwargs)

	Matches values that are longer (as per > comparison on len)
than given value.

	
callee.operators.LongerThan

	alias of callee.operators.Longer

	
class callee.operators.LongerOrEqual(*args, **kwargs)

	Matches values that are longer than,
or equal in length to (as per >= operator), given object.

	
callee.operators.LongerOrEqualTo

	alias of callee.operators.LongerOrEqual

Memberships

	
class callee.operators.Contains(value)

	Matches values that contain (as per the in operator)
given reference object.

	
class callee.operators.In(container)

	Matches values that are within the reference object
(as per the in operator).

Identity

	
class callee.operators.Is(value)

	Matches a value using the identity (is) operator.

	
class callee.operators.IsNot(value)

	Matches a value using the negated identity (is not) operator.

Equality

Note

You will most likely never use the following matcher, but it’s included for completeness.

	
class callee.operators.Eq(value)

	Matches a value exactly using the equality (==) operator.

This is already the default mode of operation for assert_called_with
methods on mocks, making this matcher redundant in most situations:

mock_foo.assert_called_with(bar)
mock_foo.assert_called_with(Eq(bar)) # equivalent

In very rare and specialized cases, however, if the tested code treats
callee matcher objects in some special way, using Eq may be
necessary.

Those situations shouldn’t generally arise outside of writing tests
for code that is itself a test library or helper.

	Parameters

	value – Value to match against

 Project logo (First Telephone)
 by Patricia Canales Odriozola
 from the Noun Project

Creating custom matchers

The wide assortment of predefined matchers should be sufficient for a vast majority of your use cases.

But when they’re not, don’t worry. callee enables you to create your own, custom matchers quickly and succinctly.
Those new matchers will be as capable as the standard ones, too, meaning you can use them in
logical expressions, or with collection matchers such as List.

Here you can learn about all the possible ways of creating matchers with custom logic.

Predicates

The simplest technique is based on (re)using a predicate – that is, a function that returns a boolean result
(True or False). This is handy when you already have a piece of code that recognizes objects you want to match.

Suppose you have this function:

def is_even(x):
 return x % 2 == 0

In order to turn it into an ad-hoc matcher, all need to do is wrap it in a Matching object:

mock_compute_half.assert_called_with(Matching(is_even))

Matching (also aliased as ArgThat) accepts any callable that takes a single argument – the object to
match – and interprets its result as a boolean value.

As you may expect, returning True (or any Python “truthy” object) means that given argument matches the criteria.
Otherwise, the match is considered unsuccessful.
(If the function raises an exception, this is also interpreted as a failed match).

Since it’s valid to pass any Python callable to Matching/ArgThat, you can do basically anything there:

Matching(lambda x: x % 2 == 0) # like above
ArgThat(is_prime) # defined elsewhere
Matching(bool) # matches any "truthy" value

For clearer code, however, you should strive to keep the predicates short and simple. Rather than writing a complicated
lambda expression, for example, try to break it down and combine Matching/ArgThat with the built-in
matchers.

If that proves difficult, it’s probably time to consider a custom matcher class instead.

Matcher classes

Ad-hoc matchers created with Matching/ArgThat are handy for some quick checks, but they have
certain limitations:

	They cannot accept parameters that modify their behavior (unless you parametrize the callable itself,
which is clever but somewhat tricky and therefore not recommended).

	The error messages they produce are not very informative, which makes it harder to debug and fix tests
that use them.

These constraints are outgrown quickly when you use the same ad-hoc matcher more than once or twice.

Subclassing Matcher

The canonical way of creating a custom matcher type is to inherit from the Matcher base class.

The only method you need to override there is match. It shall take a single argument – the value to test –
and return a boolean result:

class Even(Matcher):
 def match(self, value):
 return value % 2 == 0

The new matcher is immediately usable in assertions:

mock_compute_half.assert_called_with(Even())

or in any other context you’d normally use a matcher in.

Parametrized matchers

Because matchers deriving from the Matcher class are normal Python objects, their construction
can be parametrized to provide additional flexibility.

The easiest and most common way is simply to save the arguments of __init__ as attributes on the object,
so that the match method can access them as needed:

class Divisible(Matcher):
 """Matches a value that has given divisor."""

 def __init__(self, by):
 self.divisor = by

 def match(self, value):
 return value % self.divisor == 0

Usage of such a matcher is rather straightforward:

mock_compute_half.assert_called_with(Divisible(by=2))

Overriding __repr__

Custom matchers written as classes have one more advantage over ad-hoc ones. It is possible to redefine their
__repr__ method, allowing for more informative error messages on failed assertions.

As an example, it would be good if Divisible matcher the from previous section told us what number it expected
for the argument to be divisible by. This is easy enough to add:

def __repr__(self):
 return "<divisible by %d>" % (self.divisor,)

and makes relevant AssertionErrors more readable:

>>> mock_compute_half(3)
>>> mock_compute_half.assert_called_with(Divisible(by=2))
...
AssertionError: Expected call: mock(<divisible by 2>)
Actual call: mock(3)

In general, all parametrized matchers should probably override __repr__ to show, at a glance, what parameters
they were instantiated with.

Note

The convention to surround matcher representations in angle brackets (<...>) is followed by
all built-in matchers in callee, because it makes it easier to tell them apart from literal values.
Adopting it for your own matches is therefore recommended.

Best practices

Ad-hoc matchers (those created with Matching/ArgThat) are best used judiciously. Ideally,
you would want to involve them only if:

	you already have a predicate you can use, or you can define one easily as a lambda

	your test is very short, so that it’s easy to debug when it breaks

As a rule of thumb, whenever you define a function solely to use it with Matching/ArgThat,
you should strongly consider creating a Matcher subclass instead.
There is almost no additional boilerplate involved, and the resulting matcher will be more reusable and easier to extend.

Plus, if the new matcher turns up to be useful in multiple tests or projects, it can be added to callee itself!

 Project logo (First Telephone)
 by Patricia Canales Odriozola
 from the Noun Project

General matchers

These matchers are the most general breed that is not specific to any
particular kind of objects. They allow you to match mock parameters
based on their Python types, object attributes, and even arbitrary
boolean predicates.

	
class callee.general.Any

	Matches any object.

	
class callee.general.Matching(predicate, desc=None)

	Matches an object that satisfies given predicate.

	Parameters

	
	predicate – Callable taking a single argument
and returning True or False

	desc – Optional description of the predicate.
This will be displayed as a part of the error message
on failed assertion.

	
callee.general.ArgThat

	alias of callee.general.Matching

	
class callee.general.Captor(matcher=None)

	Argument captor.

You can use Captor to “capture” the original argument
that the mock was called with, and perform custom assertions on it.

Example:

captor = Captor()
mock_foo.assert_called_with(captor)

captured value is available as the `arg` attribute
self.assertEquals(captor.arg.some_method(), 42)
self.assertEquals(captor.arg.some_other_method(), "foo")

New in version 0.2.

	Parameters

	matcher – Optional matcher to validate the argument against
before it’s captured

Type matchers

Use these matchers to assert on the type of objects passed to your mocks.

	
class callee.types.InstanceOf(type_, exact=False)

	Matches an object that’s an instance of given type
(as per isinstance).

	Parameters

	
	type_ – Type to match against

	exact – If True, the match will only succeed if the value type matches
given type_ exactly.
Otherwise (the default), a subtype of type_ will also match.

	
callee.types.IsA

	alias of callee.types.InstanceOf

	
class callee.types.SubclassOf(type_, strict=False)

	Matches a class that’s a subclass of given type
(as per issubclass).

	Parameters

	
	type_ – Type to match against

	strict – If True, the match if only succeed if the value is a _strict_
subclass of type_ – that is, it’s not type_ itself.
Otherwise (the default), any subclass of type_ matches.

	
callee.types.Inherits

	alias of callee.types.SubclassOf

	
class callee.types.Type

	Matches any Python type object.

	
class callee.types.Class

	Matches a class (but not any other type object).

Attribute matchers

These match objects based on their Python attributes.

	
class callee.attributes.Attrs(*args, **kwargs)

	Matches objects based on their attributes.

To match successfully, the object needs to:

	have all the attributes whose names were passed
as positional arguments (regardless of their values)

	have the attribute names/values that correspond exactly
to keyword arguments’ names and values

Examples:

Attrs('foo') # `foo` attribute with any value
Attrs('foo', 'bar') # `foo` and `bar` attributes with any values
Attrs(foo=42) # `foo` attribute with value of 42
Attrs(bar=Integer()) # `bar` attribute whose value is an integer
Attrs('foo', bar='x') # `foo` with any value, `bar` with value of 'x'

	
class callee.attributes.HasAttrs(*args)

	Matches objects that have all of the specified attribute names,
regardless of their values.

Function matchers

	
class callee.functions.Callable

	Matches any callable object (as per the callable() [https://docs.python.org/2.7/library/functions.html#callable] function).

	
class callee.functions.Function

	Matches any Python function.

	
class callee.functions.GeneratorFunction

	Matches a generator function, i.e. one that uses yield in its body.

Note

This is distinct from matching a generator,
i.e. an iterable result of calling the generator function,
or a generator comprehension ((... for x in ...)).
The Generator matcher
should be used for those objects instead.

	
class callee.functions.CoroutineFunction

	Matches a coroutine function.

A coroutine function is an asynchronous function defined using the
@asyncio.coroutine or the async def syntax.

These are only available in Python 3.4 and above.
On previous versions of Python, no object will match this matcher.

Object matchers

	
class callee.objects.Bytes

	Matches a byte array, i.e. the bytes type.

On Python 2, bytes class is identical to str [https://docs.python.org/2.7/library/functions.html#str] class.

On Python 3, byte strings are separate class, distinct from str [https://docs.python.org/2.7/library/functions.html#str].

	
class callee.objects.Coroutine

	Matches an asynchronous coroutine.

A coroutine is a result of an asynchronous function call, where the async
function has been defined using @asyncio.coroutine or the async def
syntax.

These are only available in Python 3.4 and above.
On previous versions of Python, no object will match this matcher.

	
class callee.objects.FileLike(read=True, write=None)

	Matches a file-like object.

In general, a file-like object is an object you can read data from,
or write data to.

	Parameters

	
	read – Whether only to match objects that do support (True)
or don’t support (False) reading from them.
If None is passed, reading capability is not matched against.

	write – Whether only to match objects that do support (True)
or don’t support (False) writing to them.
If None is passed, writing capability is not matched against.

 Project logo (First Telephone)
 by Patricia Canales Odriozola
 from the Noun Project

String matchers

The String matcher is the one you’d be using most of the time to match string arguments.

More specialized matchers can distinguish between native Python 2/3 types for strings and binary data.

	
class callee.strings.String

	Matches any string.

On Python 2, this means either str [https://docs.python.org/2.7/library/functions.html#str] or unicode objects.

On Python 3, this means str [https://docs.python.org/2.7/library/functions.html#str] objects exclusively.

	
class callee.strings.Unicode

	Matches a Unicode string.

On Python 2, this means unicode objects exclusively.

On Python 3, this means str [https://docs.python.org/2.7/library/functions.html#str] objects exclusively.

	
class callee.strings.Bytes

	Matches a byte array, i.e. the bytes type.

On Python 2, bytes class is identical to str [https://docs.python.org/2.7/library/functions.html#str] class.

On Python 3, byte strings are separate class, distinct from str [https://docs.python.org/2.7/library/functions.html#str].

Patterns

These matchers check whether the string is of certain form.

Matching may be done based on prefix, suffix, or one of the various ways of specifying strings patterns,
such as regular expressions.

	
class callee.strings.StartsWith(prefix)

	Matches a string starting with given prefix.

	
class callee.strings.EndsWith(suffix)

	Matches a string ending with given suffix.

	
class callee.strings.Glob(pattern, case=None)

	Matches a string against a Unix shell wildcard pattern.

See the fnmatch [https://docs.python.org/2.7/library/fnmatch.html#module-fnmatch] module for more details about those patterns.

	Parameters

	
	pattern – Pattern to match against

	case – Case sensitivity setting. Possible options:

	'system' or None: case sensitvity is system-dependent
(this is the default)

	True: matching is case-sensitive

	False: matching is case-insensitive

	
class callee.strings.Regex(pattern, flags=0)

	Matches a string against a regular expression.

	Parameters

	
	pattern – Regular expression to match against.
It can be given as string,
or as a compiled regular expression object

	flags – Flags to use with a regular expression passed as string

 Project logo (First Telephone)
 by Patricia Canales Odriozola
 from the Noun Project

Numeric matchers

These matchers allow you to assert on specific numeric types, such as int [https://docs.python.org/2.7/library/functions.html#int]s or float [https://docs.python.org/2.7/library/functions.html#float]s
They are often combined with operator matchers to formulate constaints on numeric arguments of mocks:

from callee import Integer, GreaterThan
mock_foo.assert_called_with(Integer() & GreaterThan(42))

Integers

	
class callee.numbers.Integer

	Matches a regular integer.

On Python 3, there is no distinction between regular and long integer,
making this matcher and Long equivalent.

On Python 2, this matches the int [https://docs.python.org/2.7/library/functions.html#int] integers exclusively.

	
class callee.numbers.Long

	Matches a long integer.

On Python 3, this is the same as regular integer, making this matcher
and Integer equivalent.

On Python 2, this matches the long [https://docs.python.org/2.7/library/functions.html#long] integers exclusively.

	
class callee.numbers.Integral

	Matches any integer.
This ignores the length of integer’s internal representation on Python 2.

Rational numbers

	
class callee.numbers.Fraction

	Matches a fraction object.

	
class callee.numbers.Rational

	Matches a rational number.
This includes all integer numbers as well.

Floating point numbers

	
class callee.numbers.Float

	Matches a floating point number.

	
class callee.numbers.Real

	Matches any real number.

This includes all rational and integer numbers as well, which in Python
translates to fractions, and integers.

Complex numbers

	
class callee.numbers.Complex

	Matches any complex number.

This includes all real, rational, and integer numbers as well,
which in Python translates to floats, fractions, and integers.

All numbers

	
class callee.numbers.Number

	Matches any number
(integer, float, complex, custom number types, etc.).

 Project logo (First Telephone)
 by Patricia Canales Odriozola
 from the Noun Project

Collection matchers

Besides allowing you to assert about various collection types (lists, sets, etc.),
these matchers can also verify the elements inside those collections.

This way, you can express even complex conditions in a concise and readable manner.
Here’s a couple of examples:

list of ints
List(Integer())
List(of=Integer())
List(int) # types are also accepted as item matchers

list of strings starting with 'http://'
List(of=String() & StartsWith('http://'))

dictionary mapping strings to strings
Dict(String(), String())

dict with string keys (no restriction on values)
Dict(keys=String())

list of dicts mapping strings to some custom type
List(Dict(String(), Foo))

Abstract collection types

These mostly correspond to the abstract base classes [https://docs.python.org/library/collections.html#collections-abstract-base-classes] defined in the standard collections [https://docs.python.org/2.7/library/collections.html#module-collections] module [https://docs.python.org/library/collections.html].

	
class callee.collections.Iterable

	Matches any iterable.

	
class callee.collections.Generator

	Matches an iterable that’s a generator.

A generator can be a generator expression (“comprehension”)
or an invocation of a generator function (one that yields objects).

Note

To match a generator function itself, you should use the
GeneratorFunction matcher instead.

	
class callee.collections.Sequence(of=None)

	Matches a sequence of given items.

A sequence is an iterable that has a length and can be indexed.

	Parameters

	of – Optional matcher for the elements,
or the expected type of the elements.

	
class callee.collections.Mapping(*args, **kwargs)

	Matches a mapping of given items.

Constructor can be invoked either with parameters described below
(given as keyword arguments), or with two positional arguments:
matchers/types for dictionary keys & values:

Dict(String(), int) # dict mapping strings to ints

	Parameters

	
	keys – Matcher for dictionary keys.

	values – Matcher for dictionary values.

	of – Matcher for dictionary items, or a tuple of matchers
for keys & values, e.g. (String(), Integer()).
Cannot be provided if either keys or values
is also passed.

Concrete collections

These match the particular Python built-in collections types, like list or dict [https://docs.python.org/2.7/library/stdtypes.html#dict].

	
class callee.collections.List(of=None)

	Matches a list of given items.

	Parameters

	of – Optional matcher for the elements,
or the expected type of the elements.

	
class callee.collections.Set(of=None)

	Matches a set [https://docs.python.org/2.7/library/stdtypes.html#set] of given items.

	Parameters

	of – Optional matcher for the elements,
or the expected type of the elements.

	
class callee.collections.Dict(*args, **kwargs)

	Matches a dictionary (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) of given items.

Constructor can be invoked either with parameters described below
(given as keyword arguments), or with two positional arguments:
matchers/types for dictionary keys & values:

Dict(String(), int) # dict mapping strings to ints

	Parameters

	
	keys – Matcher for dictionary keys.

	values – Matcher for dictionary values.

	of – Matcher for dictionary items, or a tuple of matchers
for keys & values, e.g. (String(), Integer()).
Cannot be provided if either keys or values
is also passed.

	
class callee.collections.OrderedDict(*args, **kwargs)

	Matches an ordered dictionary (collections.OrderedDict [https://docs.python.org/2.7/library/collections.html#collections.OrderedDict])
of given items.

On Python 2.6, this requires the ordereddict backport package.
Otherwise, no object will match this matcher.

For more information about arguments,
see the documentation of Dict.

 Project logo (First Telephone)
 by Patricia Canales Odriozola
 from the Noun Project

Operator matchers

Comparisons

These matchers use Python’s relational operators: <, >=, etc.

	
class callee.operators.Less(*args, **kwargs)

	Matches values that are smaller (as per < operator)
than given object.

Accepts a single argument: the reference object to compare against.

It can be passed either as a single positional parameter,
or as a single keyword argument – preferably with a readable name,
for example:

some_mock.assert_called_with(Number() & LessOrEqual(to=42))

	
callee.operators.LessThan

	alias of callee.operators.Less

	
callee.operators.Lt

	alias of callee.operators.Less

	
class callee.operators.LessOrEqual(*args, **kwargs)

	Matches values that are smaller than,
or equal to (as per <= operator), given object.

Accepts a single argument: the reference object to compare against.

It can be passed either as a single positional parameter,
or as a single keyword argument – preferably with a readable name,
for example:

some_mock.assert_called_with(Number() & LessOrEqual(to=42))

	
callee.operators.LessOrEqualTo

	alias of callee.operators.LessOrEqual

	
callee.operators.Le

	alias of callee.operators.LessOrEqual

	
class callee.operators.Greater(*args, **kwargs)

	Matches values that are greater (as per > operator)
than given object.

Accepts a single argument: the reference object to compare against.

It can be passed either as a single positional parameter,
or as a single keyword argument – preferably with a readable name,
for example:

some_mock.assert_called_with(Number() & LessOrEqual(to=42))

	
callee.operators.GreaterThan

	alias of callee.operators.Greater

	
callee.operators.Gt

	alias of callee.operators.Greater

	
class callee.operators.GreaterOrEqual(*args, **kwargs)

	Matches values that are greater than,
or equal to (as per >= operator), given object.

Accepts a single argument: the reference object to compare against.

It can be passed either as a single positional parameter,
or as a single keyword argument – preferably with a readable name,
for example:

some_mock.assert_called_with(Number() & LessOrEqual(to=42))

	
callee.operators.GreaterOrEqualTo

	alias of callee.operators.GreaterOrEqual

	
callee.operators.Ge

	alias of callee.operators.GreaterOrEqual

By length

In addition to simple comparison matchers described, callee offers a set of dedicated matchers for asserting
on object’s length. You can use them in conjunction with any Python Sequence: a str [https://docs.python.org/2.7/library/functions.html#str]ing,
list, collections.deque [https://docs.python.org/2.7/library/collections.html#collections.deque], and so on.

	
class callee.operators.Shorter(*args, **kwargs)

	Matches values that are shorter (as per < comparison on len)
than given value.

	
callee.operators.ShorterThan

	alias of callee.operators.Shorter

	
class callee.operators.ShorterOrEqual(*args, **kwargs)

	Matches values that are shorter than,
or equal in length to (as per <= operator), given object.

	
callee.operators.ShorterOrEqualTo

	alias of callee.operators.ShorterOrEqual

	
class callee.operators.Longer(*args, **kwargs)

	Matches values that are longer (as per > comparison on len)
than given value.

	
callee.operators.LongerThan

	alias of callee.operators.Longer

	
class callee.operators.LongerOrEqual(*args, **kwargs)

	Matches values that are longer than,
or equal in length to (as per >= operator), given object.

	
callee.operators.LongerOrEqualTo

	alias of callee.operators.LongerOrEqual

Memberships

	
class callee.operators.Contains(value)

	Matches values that contain (as per the in operator)
given reference object.

	
class callee.operators.In(container)

	Matches values that are within the reference object
(as per the in operator).

Identity

	
class callee.operators.Is(value)

	Matches a value using the identity (is) operator.

	
class callee.operators.IsNot(value)

	Matches a value using the negated identity (is not) operator.

Equality

Note

You will most likely never use the following matcher, but it’s included for completeness.

	
class callee.operators.Eq(value)

	Matches a value exactly using the equality (==) operator.

This is already the default mode of operation for assert_called_with
methods on mocks, making this matcher redundant in most situations:

mock_foo.assert_called_with(bar)
mock_foo.assert_called_with(Eq(bar)) # equivalent

In very rare and specialized cases, however, if the tested code treats
callee matcher objects in some special way, using Eq may be
necessary.

Those situations shouldn’t generally arise outside of writing tests
for code that is itself a test library or helper.

	Parameters

	value – Value to match against

 Project logo (First Telephone)
 by Patricia Canales Odriozola
 from the Noun Project

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | R
 | S
 | T
 | U

A

 	
 	Any (class in callee.general)

 	
 	ArgThat (in module callee.general)

 	Attrs (class in callee.attributes)

B

 	
 	Bytes (class in callee.objects)

 	(class in callee.strings)

C

 	
 	Callable (class in callee.functions)

 	Captor (class in callee.general)

 	Class (class in callee.types)

 	
 	Complex (class in callee.numbers)

 	Contains (class in callee.operators)

 	Coroutine (class in callee.objects)

 	CoroutineFunction (class in callee.functions)

D

 	
 	Dict (class in callee.collections)

E

 	
 	EndsWith (class in callee.strings)

 	
 	Eq (class in callee.operators)

F

 	
 	FileLike (class in callee.objects)

 	Float (class in callee.numbers)

 	
 	Fraction (class in callee.numbers)

 	Function (class in callee.functions)

G

 	
 	Ge (in module callee.operators)

 	Generator (class in callee.collections)

 	GeneratorFunction (class in callee.functions)

 	Glob (class in callee.strings)

 	
 	Greater (class in callee.operators)

 	GreaterOrEqual (class in callee.operators)

 	GreaterOrEqualTo (in module callee.operators)

 	GreaterThan (in module callee.operators)

 	Gt (in module callee.operators)

H

 	
 	HasAttrs (class in callee.attributes)

I

 	
 	In (class in callee.operators)

 	Inherits (in module callee.types)

 	InstanceOf (class in callee.types)

 	Integer (class in callee.numbers)

 	
 	Integral (class in callee.numbers)

 	Is (class in callee.operators)

 	IsA (in module callee.types)

 	IsNot (class in callee.operators)

 	Iterable (class in callee.collections)

L

 	
 	Le (in module callee.operators)

 	Less (class in callee.operators)

 	LessOrEqual (class in callee.operators)

 	LessOrEqualTo (in module callee.operators)

 	LessThan (in module callee.operators)

 	List (class in callee.collections)

 	
 	Long (class in callee.numbers)

 	Longer (class in callee.operators)

 	LongerOrEqual (class in callee.operators)

 	LongerOrEqualTo (in module callee.operators)

 	LongerThan (in module callee.operators)

 	Lt (in module callee.operators)

M

 	
 	Mapping (class in callee.collections)

 	
 	Matching (class in callee.general)

N

 	
 	Number (class in callee.numbers)

O

 	
 	OrderedDict (class in callee.collections)

R

 	
 	Rational (class in callee.numbers)

 	
 	Real (class in callee.numbers)

 	Regex (class in callee.strings)

S

 	
 	Sequence (class in callee.collections)

 	Set (class in callee.collections)

 	Shorter (class in callee.operators)

 	ShorterOrEqual (class in callee.operators)

 	
 	ShorterOrEqualTo (in module callee.operators)

 	ShorterThan (in module callee.operators)

 	StartsWith (class in callee.strings)

 	String (class in callee.strings)

 	SubclassOf (class in callee.types)

T

 	
 	Type (class in callee.types)

U

 	
 	Unicode (class in callee.strings)

 Project logo (First Telephone)
 by Patricia Canales Odriozola
 from the Noun Project

 _static/minus.png

_static/plus.png

_static/file.png

_static/logo.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 callee

 		
 Installing

 		
 Compatibility

 		
 About the mock library

 		
 Instructions

 		
 Bleeding edge

 		
 Using matchers with mock

 		
 Example

 		
 Matching basics

 		
 Combining matchers

 		
 Next steps

 		
 General matchers

 		
 String matchers

 		
 Numeric matchers

 		
 Collection matchers

 		
 Operator matchers

 		
 Creating custom matchers

 		
 Predicates

 		
 Matcher classes

 		
 Subclassing Matcher

 		
 Parametrized matchers

 		
 Overriding __repr__

 		
 Best practices

 		
 General matchers

 		
 Type matchers

 		
 Attribute matchers

 		
 Function matchers

 		
 Object matchers

 		
 String matchers

 		
 Patterns

 		
 Numeric matchers

 		
 Integers

 		
 Rational numbers

 		
 Floating point numbers

 		
 Complex numbers

 		
 All numbers

 		
 Collection matchers

 		
 Abstract collection types

 		
 Concrete collections

 		
 Operator matchers

 		
 Comparisons

 		
 By length

 		
 Memberships

 		
 Identity

 		
 Equality

_static/comment-bright.png

_static/ajax-loader.gif

