
callee Documentation
Release 0.3

Karol Kuczmarski

March 02, 2017

Contents

1 User’s Guide 3

2 API Reference 19

i

ii

callee Documentation, Release 0.3

callee provides a wide collection of argument matchers to use with the standard unittest.mock library.

It allows you to write simple, readable, and powerful assertions on how the tested code should interact with your
mocks:

from callee import Dict, StartsWith, String

mock_requests.get.assert_called_with(
String() & StartsWith('https://'),
params=Dict(String(), String()))

With callee, you can avoid both the overly lenient mock.ANY, as well as the tedious, error-prone code that manually
checks Mock.call_args and call_args_list.

Contents 1

https://docs.python.org/3/library/unittest.mock.html#any
https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock.call_args
https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock.call_args_list

callee Documentation, Release 0.3

2 Contents

CHAPTER 1

User’s Guide

Start here for the installation instructions and a quick, complete overview of callee and its usage.

Installing

TL;DR: On Python 2.6, 2.7, and 3.3+, simply use pip (preferably inside virtualenv):

$ pip install callee

More detailed instructions and additional notes can be found below.

Compatibility

callee itself has no external depedencies: it only needs Python. Both Python 2 and Python 3 is supported, with some
caveats:

• if you’re using Python 2, you need version 2.6 or 2.7

• if you use Python 3, you need at least version 3.3

The library is tested against both CPython (the standard Python implementation) and PyPy.

About the mock library

Although it’s not a hard dependency, by design callee is meant to be used with the unittest.mock module, which
implements mock objects for testing.

In Python 3.3 and later, this module is a part of the standard library, and it’s already available on any Python distribu-
tion.

In earlier versions of Python – including 2.7 and even 2.6 – you should be using the backport called mock. It has the
exact same interface as unittest.mock, and can be used to write forward-compatible test code. You can install it
from PyPI with pip:

$ pip install mock

If you plan to run your tests against both Python 2.x and 3.x, the recommended way of importing the mock library is
the following:

3

http://pypy.org/
https://docs.python.org/3/library/unittest.mock.html
https://pypi.python.org/pypi/mock

callee Documentation, Release 0.3

try:
import unittest.mock as mock

except ImportError:
import mock

You can then use the mock classes in your tests by referring to them as mock.Mock or mock.MagicMock. Ad-
ditionally, you’ll also have a convenient access to the rest of the mocking functionality, like the @mock.patch
decorator.

Instructions

The preferred way to install callee is through pip:

$ pip install callee

This will get you the most recent version available on PyPI.

Bleeding edge

If you want to work with the development version instead, you may either manually clone it using Git, or have pip
install it directly from the Git repository.

The first option is especially useful when you need to make some modifications to the library itself (which you’ll
hopefully contribute back via a pull request!). If that’s the case, clone the library and install it in development mode:

$ git clone https://github.com/Xion/callee.git
Initialized empty Git repository in ~/dev/callee/.git/
$ cd callee
activate/create your virtualenv if necessary
$ python setup.py develop
...
Finished processing dependencies for callee

The second approach is adequate if you want to use some feature of the library that hasn’t made it to a PyPI release
yet but don’t need to make your own modifications. You can tell pip to pull the library directly from its Git repository:

activate/create your virtualenv if necessary
$ pip install git+https://github.com/Xion/callee.git#egg=callee

Using matchers with mock

Mocks – or more generally, test doubles – are used to provide the necessary dependencies (objects, functions, data,
etc.) to the code under test. We often configure mocks to expose an interface that the code can rely on. We also expect
it to make use of this interface in a well-defined, predictable way.

In Python, the configuration part mostly taken care of by the mock library. But when it comes to asserting that the
expected mocks interactions had happened, callee can help quite a bit.

Example

Suppose you are testing the controller of a landing page for users that are signed in to your web application. The
page should display a portion of the most recent items of interest – posts, notifications, or anything else specific to the
service.

4 Chapter 1. User’s Guide

https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock
https://docs.python.org/3/library/unittest.mock.html#unittest.mock.MagicMock
https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch
https://pypi.python.org/pypi/callee/

callee Documentation, Release 0.3

The test seems straightforward enough:

@mock.patch.object(database, 'fetch_recent_items')
def test_landing_page(self, mock_fetch_recent_items):

login_user(self.user)
self.http_client.get('/')
mock_fetch_recent_items.assert_called_with(count=8)

Unfortunately, the assert it contains turns out to be quite brittle. If you think about it, the number of items to display
is very much a UX decision, and it likely changes pretty often as the UI is iterated upon. But with a test like that, you
have to go back and modify the assertion whenever the value is adjusted in the production code.

Not good! The test shouldn’t really care what the exact count is. As long as it’s a positive integer, maybe except 1 or
2, the test should pass just fine.

Using argument matchers provided by callee, you can express this intent clearly and concisely:

from callee import GreaterThan, Integer

...
mock_fetch_recent_items.assert_called_with(

count=Integer() & GreaterThan(1))

Much better! Now you can tweak the layout of the page without further issue.

Matching basics

You can use all callee matchers any time you are asserting on calls received by Mock, MagicMock, or other mock
objects. They are applicable as arguments to any of the following methods:

• assert_called_with

• assert_called_once_with

• assert_any_call

• assert_not_called

Moreover, the mock.call helper can also accept matchers in place of call arguments. This enables you to also use
the assert_has_calls method if you like:

some_mock.assert_has_calls([
call(0, String()),
call(1, String()),
call(2, String()),

])

Finally, you can still leverage matchers even when you’re working directly with the call_args_list,
method_calls, or mock_calls attributes. The only reason you’d still want that, though, is verifying the ex-
act calls a mock receives, in order:

assert some_mock.call_args_list == [
mock.call(String(), Integer()),
mock.call(String(), 42),

]

But most tests don’t need to be this rigid, so remember to use this technique sparingly.

1.2. Using matchers with mock 5

https://docs.python.org/3/library/unittest.mock.html#calls-as-tuples
https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock.assert_has_calls

callee Documentation, Release 0.3

Combining matchers

Individual matchers, such as String or Float, can be combined to build more complex expressions. This is
accomplished with Python’s “logical” operators: |, &, and ~.

Specifically, given matchers A and B:

• A | B matches objects that match A or B

• A & B matches objects that match both A and B

• ~A matches objects do not match A

Here’s a few examples:

some_mock.assert_called_with(Number() | InstanceOf(Foo))
some_mock.assert_called_with(String() & ShorterThan(9))
some_mock.assert_called_with(String() & ~Contains('forbidden'))

All matchers can be combined this way, including any custom ones that you write yourself.

Next steps

Now that you know how to use matchers and how to combine them into more complex expressions, you probably want
to have a look at the wide array of existing matchers offerred by callee:

General matchers

These matchers are the most general breed that is not specific to any particular kind of objects. They allow you to
match mock parameters based on their Python types, object attributes, and even arbitrary boolean predicates.

class callee.general.Any
Matches any object.

class callee.general.Matching(predicate, desc=None)
Matches an object that satisfies given predicate.

Parameters

• predicate – Callable taking a single argument and returning True or False

• desc – Optional description of the predicate. This will be displayed as a part of the error
message on failed assertion.

callee.general.ArgThat
alias of Matching

class callee.general.Captor(matcher=None)
Argument captor.

You can use Captor to “capture” the original argument that the mock was called with, and perform custom
assertions on it.

Example:

captor = Captor()
mock_foo.assert_called_with(captor)

captured value is available as the `arg` attribute
self.assertEquals(captor.arg.some_method(), 42)
self.assertEquals(captor.arg.some_other_method(), "foo")

6 Chapter 1. User’s Guide

callee Documentation, Release 0.3

New in version 0.2.

Parameters matcher – Optional matcher to validate the argument against before it’s captured

Type matchers

Use these matchers to assert on the type of objects passed to your mocks.

class callee.types.InstanceOf(type_, exact=False)
Matches an object that’s an instance of given type (as per isinstance).

Parameters

• type_ – Type to match against

• exact – If True, the match will only succeed if the value type matches given type_
exactly. Otherwise (the default), a subtype of type_ will also match.

callee.types.IsA
alias of InstanceOf

class callee.types.SubclassOf(type_, strict=False)
Matches a class that’s a subclass of given type (as per issubclass).

Parameters

• type_ – Type to match against

• strict – If True, the match if only succeed if the value is a _strict_ subclass of type_ –
that is, it’s not type_ itself. Otherwise (the default), any subclass of type_ matches.

callee.types.Inherits
alias of SubclassOf

class callee.types.Type
Matches any Python type object.

class callee.types.Class
Matches a class (but not any other type object).

Attribute matchers

These match objects based on their Python attributes.

class callee.attributes.Attrs(*args, **kwargs)
Matches objects based on their attributes.

To match successfully, the object needs to:

•have all the attributes whose names were passed as positional arguments (regardless of their values)

•have the attribute names/values that correspond exactly to keyword arguments’ names and values

Examples:

Attrs('foo') # `foo` attribute with any value
Attrs('foo', 'bar') # `foo` and `bar` attributes with any values
Attrs(foo=42) # `foo` attribute with value of 42
Attrs(bar=Integer()) # `bar` attribute whose value is an integer
Attrs('foo', bar='x') # `foo` with any value, `bar` with value of 'x'

1.2. Using matchers with mock 7

callee Documentation, Release 0.3

class callee.attributes.HasAttrs(*args)
Matches objects that have all of the specified attribute names, regardless of their values.

Function matchers

class callee.functions.Callable
Matches any callable object (as per the callable() function).

class callee.functions.Function
Matches any Python function.

class callee.functions.GeneratorFunction
Matches a generator function, i.e. one that uses yield in its body.

Note: This is distinct from matching a generator, i.e. an iterable result of calling the generator function, or
a generator comprehension ((... for x in ...)). The Generator matcher should be used for those
objects instead.

class callee.functions.CoroutineFunction
Matches a coroutine function.

A coroutine function is an asynchronous function defined using the @asyncio.coroutine or the async
def syntax.

These are only available in Python 3.4 and above. On previous versions of Python, no object will match this
matcher.

Object matchers

class callee.objects.Bytes
Matches a byte array, i.e. the bytes type.

On Python 2, bytes class is identical to str class.
On Python 3, byte strings are separate class, distinct from str.

class callee.objects.Coroutine
Matches an asynchronous coroutine.

A coroutine is a result of an asynchronous function call, where the async function has been defined using
@asyncio.coroutine or the async def syntax.

These are only available in Python 3.4 and above. On previous versions of Python, no object will match this
matcher.

class callee.objects.FileLike(read=True, write=None)
Matches a file-like object.

In general, a file-like object is an object you can read data from, or write data to.

Parameters

• read – Whether only to match objects that do support (True) or don’t support (False)
reading from them. If None is passed, reading capability is not matched against.

8 Chapter 1. User’s Guide

https://docs.python.org/2.7/library/functions.html#callable
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

callee Documentation, Release 0.3

• write – Whether only to match objects that do support (True) or don’t support (False)
writing to them. If None is passed, writing capability is not matched against.

String matchers

The String matcher is the one you’d be using most of the time to match string arguments.

More specialized matchers can distinguish between native Python 2/3 types for strings and binary data.

class callee.strings.String
Matches any string.

On Python 2, this means either str or unicode objects.
On Python 3, this means str objects exclusively.

class callee.strings.Unicode
Matches a Unicode string.

On Python 2, this means unicode objects exclusively.
On Python 3, this means str objects exclusively.

class callee.strings.Bytes
Matches a byte array, i.e. the bytes type.

On Python 2, bytes class is identical to str class.
On Python 3, byte strings are separate class, distinct from str.

Patterns

These matchers check whether the string is of certain form.

Matching may be done based on prefix, suffix, or one of the various ways of specifying strings patterns, such as regular
expressions.

class callee.strings.StartsWith(prefix)
Matches a string starting with given prefix.

class callee.strings.EndsWith(suffix)
Matches a string ending with given suffix.

class callee.strings.Glob(pattern, case=None)
Matches a string against a Unix shell wildcard pattern.

See the fnmatch module for more details about those patterns.

Parameters

• pattern – Pattern to match against

• case – Case sensitivity setting. Possible options:

– ’system’ or None: case sensitvity is system-dependent (this is the default)

1.2. Using matchers with mock 9

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/fnmatch.html#module-fnmatch

callee Documentation, Release 0.3

– True: matching is case-sensitive

– False: matching is case-insensitive

class callee.strings.Regex(pattern, flags=0)
Matches a string against a regular expression.

Parameters

• pattern – Regular expression to match against. It can be given as string, or as a compiled
regular expression object

• flags – Flags to use with a regular expression passed as string

Numeric matchers

These matchers allow you to assert on specific numeric types, such as ints or floats They are often combined with
operator matchers to formulate constaints on numeric arguments of mocks:

from callee import Integer, GreaterThan
mock_foo.assert_called_with(Integer() & GreaterThan(42))

Integers

class callee.numbers.Integer
Matches a regular integer.

On Python 3, there is no distinction between regular and long integer, making this matcher and Long equivalent.

On Python 2, this matches the int integers exclusively.

class callee.numbers.Long
Matches a long integer.

On Python 3, this is the same as regular integer, making this matcher and Integer equivalent.

On Python 2, this matches the long integers exclusively.

class callee.numbers.Integral
Matches any integer. This ignores the length of integer’s internal representation on Python 2.

Rational numbers

class callee.numbers.Fraction
Matches a fraction object.

class callee.numbers.Rational
Matches a rational number. This includes all integer numbers as well.

Floating point numbers

class callee.numbers.Float
Matches a floating point number.

class callee.numbers.Real
Matches any real number.

This includes all rational and integer numbers as well, which in Python translates to fractions, and integers.

10 Chapter 1. User’s Guide

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#long

callee Documentation, Release 0.3

Complex numbers

class callee.numbers.Complex
Matches any complex number.

This includes all real, rational, and integer numbers as well, which in Python translates to floats, fractions, and
integers.

All numbers

class callee.numbers.Number
Matches any number (integer, float, complex, custom number types, etc.).

Collection matchers

Besides allowing you to assert about various collection types (lists, sets, etc.), these matchers can also verify the
elements inside those collections.

This way, you can express even complex conditions in a concise and readable manner. Here’s a couple of examples:

list of ints
List(Integer())
List(of=Integer())
List(int) # types are also accepted as item matchers

list of strings starting with 'http://'
List(of=String() & StartsWith('http://'))

dictionary mapping strings to strings
Dict(String(), String())

dict with string keys (no restriction on values)
Dict(keys=String())

list of dicts mapping strings to some custom type
List(Dict(String(), Foo))

Abstract collection types

These mostly correspond to the abstract base classes defined in the standard collections module.

class callee.collections.Iterable
Matches any iterable.

class callee.collections.Generator
Matches an iterable that’s a generator.

A generator can be a generator expression (“comprehension”) or an invocation of a generator function (one that
yields objects).

Note: To match a generator function itself, you should use the GeneratorFunction matcher instead.

class callee.collections.Sequence(of=None)
Matches a sequence of given items.

1.2. Using matchers with mock 11

https://docs.python.org/library/collections.html#collections-abstract-base-classes
https://docs.python.org/library/collections.html
https://docs.python.org/2.7/library/collections.html#module-collections

callee Documentation, Release 0.3

A sequence is an iterable that has a length and can be indexed.

Parameters of – Optional matcher for the elements, or the expected type of the elements.

class callee.collections.Mapping(*args, **kwargs)
Matches a mapping of given items.

Constructor can be invoked either with parameters described below (given as keyword arguments), or with two
positional arguments: matchers/types for dictionary keys & values:

Dict(String(), int) # dict mapping strings to ints

Parameters

• keys – Matcher for dictionary keys.

• values – Matcher for dictionary values.

• of – Matcher for dictionary items, or a tuple of matchers for keys & values, e.g.
(String(), Integer()). Cannot be provided if either keys or values is also
passed.

Concrete collections

These match the particular Python built-in collections types, like list or dict.

class callee.collections.List(of=None)
Matches a list of given items.

Parameters of – Optional matcher for the elements, or the expected type of the elements.

class callee.collections.Set(of=None)
Matches a set of given items.

Parameters of – Optional matcher for the elements, or the expected type of the elements.

class callee.collections.Dict(*args, **kwargs)
Matches a dictionary (dict) of given items.

Constructor can be invoked either with parameters described below (given as keyword arguments), or with two
positional arguments: matchers/types for dictionary keys & values:

Dict(String(), int) # dict mapping strings to ints

Parameters

• keys – Matcher for dictionary keys.

• values – Matcher for dictionary values.

• of – Matcher for dictionary items, or a tuple of matchers for keys & values, e.g.
(String(), Integer()). Cannot be provided if either keys or values is also
passed.

class callee.collections.OrderedDict(*args, **kwargs)
Matches an ordered dictionary (collections.OrderedDict) of given items.

On Python 2.6, this requires the ordereddict backport package. Otherwise, no object will match this matcher.

For more information about arguments, see the documentation of Dict.

12 Chapter 1. User’s Guide

https://docs.python.org/2.7/library/functions.html#list
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#list
https://docs.python.org/2.7/library/stdtypes.html#set
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/collections.html#collections.OrderedDict

callee Documentation, Release 0.3

Operator matchers

Comparisons

These matchers use Python’s relational operators: <, >=, etc.

class callee.operators.Less(*args, **kwargs)
Matches values that are smaller (as per < operator) than given object.

Accepts a single argument: the reference object to compare against.

It can be passed either as a single positional parameter, or as a single keyword argument – preferably with a
readable name, for example:

some_mock.assert_called_with(Number() & LessOrEqual(to=42))

callee.operators.LessThan
alias of Less

callee.operators.Lt
alias of Less

class callee.operators.LessOrEqual(*args, **kwargs)
Matches values that are smaller than, or equal to (as per <= operator), given object.

Accepts a single argument: the reference object to compare against.

It can be passed either as a single positional parameter, or as a single keyword argument – preferably with a
readable name, for example:

some_mock.assert_called_with(Number() & LessOrEqual(to=42))

callee.operators.LessOrEqualTo
alias of LessOrEqual

callee.operators.Le
alias of LessOrEqual

class callee.operators.Greater(*args, **kwargs)
Matches values that are greater (as per > operator) than given object.

Accepts a single argument: the reference object to compare against.

It can be passed either as a single positional parameter, or as a single keyword argument – preferably with a
readable name, for example:

some_mock.assert_called_with(Number() & LessOrEqual(to=42))

callee.operators.GreaterThan
alias of Greater

callee.operators.Gt
alias of Greater

class callee.operators.GreaterOrEqual(*args, **kwargs)
Matches values that are greater than, or equal to (as per >= operator), given object.

Accepts a single argument: the reference object to compare against.

It can be passed either as a single positional parameter, or as a single keyword argument – preferably with a
readable name, for example:

1.2. Using matchers with mock 13

callee Documentation, Release 0.3

some_mock.assert_called_with(Number() & LessOrEqual(to=42))

callee.operators.GreaterOrEqualTo
alias of GreaterOrEqual

callee.operators.Ge
alias of GreaterOrEqual

By length In addition to simple comparison matchers described, callee offers a set of dedicated matchers for
asserting on object’s length. You can use them in conjunction with any Python Sequence: a string, list,
collections.deque, and so on.

class callee.operators.Shorter(*args, **kwargs)
Matches values that are shorter (as per < comparison on len) than given value.

callee.operators.ShorterThan
alias of Shorter

class callee.operators.ShorterOrEqual(*args, **kwargs)
Matches values that are shorter than, or equal in length to (as per <= operator), given object.

callee.operators.ShorterOrEqualTo
alias of ShorterOrEqual

class callee.operators.Longer(*args, **kwargs)
Matches values that are longer (as per > comparison on len) than given value.

callee.operators.LongerThan
alias of Longer

class callee.operators.LongerOrEqual(*args, **kwargs)
Matches values that are longer than, or equal in length to (as per >= operator), given object.

callee.operators.LongerOrEqualTo
alias of LongerOrEqual

Memberships

class callee.operators.Contains(value)
Matches values that contain (as per the in operator) given reference object.

class callee.operators.In(container)
Matches values that are within the reference object (as per the in operator).

Identity

class callee.operators.Is(value)
Matches a value using the identity (is) operator.

class callee.operators.IsNot(value)
Matches a value using the negated identity (is not) operator.

Equality

14 Chapter 1. User’s Guide

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#list
https://docs.python.org/2.7/library/collections.html#collections.deque

callee Documentation, Release 0.3

Note: You will most likely never use the following matcher, but it’s included for completeness.

class callee.operators.Eq(value)
Matches a value exactly using the equality (==) operator.

This is already the default mode of operation for assert_called_with methods on mocks, making this
matcher redundant in most situations:

mock_foo.assert_called_with(bar)
mock_foo.assert_called_with(Eq(bar)) # equivalent

In very rare and specialized cases, however, if the tested code treats callee matcher objects in some special way,
using Eq may be necessary.

Those situations shouldn’t generally arise outside of writing tests for code that is itself a test library or helper.

Parameters value – Value to match against

If your needs can’t be met by it, there is always a possibility of defining your own matchers as well.

Creating custom matchers

The wide assortment of predefined matchers should be sufficient for a vast majority of your use cases.

But when they’re not, don’t worry. callee enables you to create your own, custom matchers quickly and succinctly.
Those new matchers will be as capable as the standard ones, too, meaning you can use them in logical expressions, or
with collection matchers such as List.

Here you can learn about all the possible ways of creating matchers with custom logic.

Predicates

The simplest technique is based on (re)using a predicate – that is, a function that returns a boolean result (True or
False). This is handy when you already have a piece of code that recognizes objects you want to match.

Suppose you have this function:

def is_even(x):
return x % 2 == 0

In order to turn it into an ad-hoc matcher, all need to do is wrap it in a Matching object:

mock_compute_half.assert_called_with(Matching(is_even))

Matching (also aliased as ArgThat) accepts any callable that takes a single argument – the object to match – and
interprets its result as a boolean value.

As you may expect, returning True (or any Python “truthy” object) means that given argument matches the criteria.
Otherwise, the match is considered unsuccessful. (If the function raises an exception, this is also interpreted as a failed
match).

Since it’s valid to pass any Python callable to Matching/ArgThat, you can do basically anything there:

Matching(lambda x: x % 2 == 0) # like above
ArgThat(is_prime) # defined elsewhere
Matching(bool) # matches any "truthy" value

1.3. Creating custom matchers 15

callee Documentation, Release 0.3

For clearer code, however, you should strive to keep the predicates short and simple. Rather than writing a complicated
lambda expression, for example, try to break it down and combine Matching/ArgThat with the built-in matchers.

If that proves difficult, it’s probably time to consider a custom matcher class instead.

Matcher classes

Ad-hoc matchers created with Matching/ArgThat are handy for some quick checks, but they have certain limita-
tions:

• They cannot accept parameters that modify their behavior (unless you parametrize the callable itself, which is
clever but somewhat tricky and therefore not recommended).

• The error messages they produce are not very informative, which makes it harder to debug and fix tests that use
them.

These constraints are outgrown quickly when you use the same ad-hoc matcher more than once or twice.

Subclassing Matcher

The canonical way of creating a custom matcher type is to inherit from the Matcher base class.

The only method you need to override there is match. It shall take a single argument – the value to test – and return
a boolean result:

class Even(Matcher):
def match(self, value):

return value % 2 == 0

The new matcher is immediately usable in assertions:

mock_compute_half.assert_called_with(Even())

or in any other context you’d normally use a matcher in.

Parametrized matchers

Because matchers deriving from the Matcher class are normal Python objects, their construction can be parametrized
to provide additional flexibility.

The easiest and most common way is simply to save the arguments of __init__ as attributes on the object, so that
the match method can access them as needed:

class Divisible(Matcher):
"""Matches a value that has given divisor."""

def __init__(self, by):
self.divisor = by

def match(self, value):
return value % self.divisor == 0

Usage of such a matcher is rather straightforward:

mock_compute_half.assert_called_with(Divisible(by=2))

16 Chapter 1. User’s Guide

callee Documentation, Release 0.3

Overriding __repr__

Custom matchers written as classes have one more advantage over ad-hoc ones. It is possible to redefine their
__repr__ method, allowing for more informative error messages on failed assertions.

As an example, it would be good if Divisible matcher the from previous section told us what number it expected
for the argument to be divisible by. This is easy enough to add:

def __repr__(self):
return "<divisible by %d>" % (self.divisor,)

and makes relevant AssertionErrors more readable:

>>> mock_compute_half(3)
>>> mock_compute_half.assert_called_with(Divisible(by=2))
...
AssertionError: Expected call: mock(<divisible by 2>)
Actual call: mock(3)

In general, all parametrized matchers should probably override __repr__ to show, at a glance, what parameters they
were instantiated with.

Note: The convention to surround matcher representations in angle brackets (<...>) is followed by all built-in
matchers in callee, because it makes it easier to tell them apart from literal values. Adopting it for your own matches
is therefore recommended.

Best practices

Ad-hoc matchers (those created with Matching/ArgThat) are best used judiciously. Ideally, you would want to
involve them only if:

• you already have a predicate you can use, or you can define one easily as a lambda

• your test is very short, so that it’s easy to debug when it breaks

As a rule of thumb, whenever you define a function solely to use it with Matching/ArgThat, you should strongly
consider creating a Matcher subclass instead. There is almost no additional boilerplate involved, and the resulting
matcher will be more reusable and easier to extend.

Plus, if the new matcher turns up to be useful in multiple tests or projects, it can be added to callee itself!

1.3. Creating custom matchers 17

callee Documentation, Release 0.3

18 Chapter 1. User’s Guide

CHAPTER 2

API Reference

If you are looking for detailed information about all the matchers offered by callee, this is the place to go.

19

callee Documentation, Release 0.3

20 Chapter 2. API Reference

Index

A
Any (class in callee.general), 6
ArgThat (in module callee.general), 6
Attrs (class in callee.attributes), 7

B
Bytes (class in callee.objects), 8
Bytes (class in callee.strings), 9

C
Callable (class in callee.functions), 8
Captor (class in callee.general), 6
Class (class in callee.types), 7
Complex (class in callee.numbers), 11
Contains (class in callee.operators), 14
Coroutine (class in callee.objects), 8
CoroutineFunction (class in callee.functions), 8

D
Dict (class in callee.collections), 12

E
EndsWith (class in callee.strings), 9
Eq (class in callee.operators), 15

F
FileLike (class in callee.objects), 8
Float (class in callee.numbers), 10
Fraction (class in callee.numbers), 10
Function (class in callee.functions), 8

G
Ge (in module callee.operators), 14
Generator (class in callee.collections), 11
GeneratorFunction (class in callee.functions), 8
Glob (class in callee.strings), 9
Greater (class in callee.operators), 13
GreaterOrEqual (class in callee.operators), 13
GreaterOrEqualTo (in module callee.operators), 14
GreaterThan (in module callee.operators), 13

Gt (in module callee.operators), 13

H
HasAttrs (class in callee.attributes), 7

I
In (class in callee.operators), 14
Inherits (in module callee.types), 7
InstanceOf (class in callee.types), 7
Integer (class in callee.numbers), 10
Integral (class in callee.numbers), 10
Is (class in callee.operators), 14
IsA (in module callee.types), 7
IsNot (class in callee.operators), 14
Iterable (class in callee.collections), 11

L
Le (in module callee.operators), 13
Less (class in callee.operators), 13
LessOrEqual (class in callee.operators), 13
LessOrEqualTo (in module callee.operators), 13
LessThan (in module callee.operators), 13
List (class in callee.collections), 12
Long (class in callee.numbers), 10
Longer (class in callee.operators), 14
LongerOrEqual (class in callee.operators), 14
LongerOrEqualTo (in module callee.operators), 14
LongerThan (in module callee.operators), 14
Lt (in module callee.operators), 13

M
Mapping (class in callee.collections), 12
Matching (class in callee.general), 6

N
Number (class in callee.numbers), 11

O
OrderedDict (class in callee.collections), 12

21

callee Documentation, Release 0.3

R
Rational (class in callee.numbers), 10
Real (class in callee.numbers), 10
Regex (class in callee.strings), 10

S
Sequence (class in callee.collections), 11
Set (class in callee.collections), 12
Shorter (class in callee.operators), 14
ShorterOrEqual (class in callee.operators), 14
ShorterOrEqualTo (in module callee.operators), 14
ShorterThan (in module callee.operators), 14
StartsWith (class in callee.strings), 9
String (class in callee.strings), 9
SubclassOf (class in callee.types), 7

T
Type (class in callee.types), 7

U
Unicode (class in callee.strings), 9

22 Index

	User's Guide
	API Reference

